
Human health characterization factors of TiO₂ nanoparticles in indoor and outdoor environments

Martina Pini

Nano-TiO₂ properties

Self-cleaning coatings

Photo-induced hydrophylic TiO₂ surface

Source: J. Chen, C.-sun Poon / Building and Environment 44 (2009) 1899–1906

Air depollution

Pollution removal mechanism of TiO₂ photocatalysis

Source: J. Chen, C.-sun Poon / Building and Environment 44 (2009) 1899–1906

Nanotoxicity assessment

 Uncertainties and knowledge gaps on behavior and toxicity of nanoparticles.

We cannot remain silent!!

 The LCA methodology can help to determine the potential impacts of nanoproducts and nanomaterials on human health and environment. Pini M., Neri P., Ferrari A.M., **1° SEMINARIO TECNICO**, *Il contributo del dipartimento di scienze e metodi dell'ingegneria nello sviluppo del Life Cycle Assessment (LCA) per la gestione della sostenibilità ambientale*, Reggio Emilia, September 18, 2013

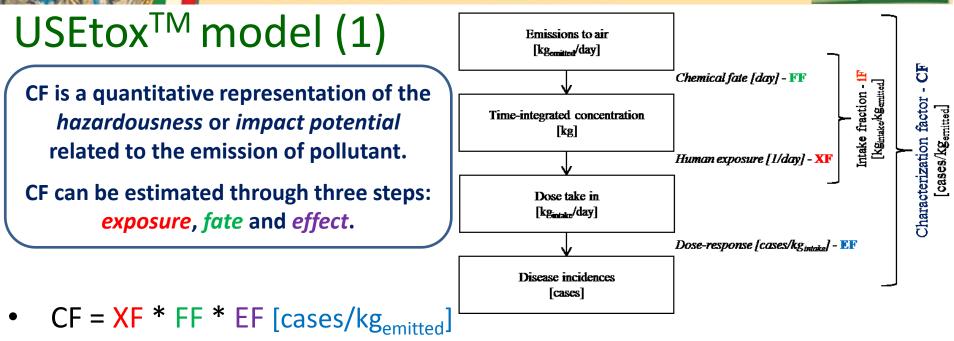
Pini M., Neri P., Montecchi R., Ferrari A.M., "Life Cycle Assessment of nanoTiO₂
functionalized porcelainized stoneware tiles",
247th ACS National Meeting & Exposition, Dallas, Texas, March 16-20, 2014

Collaboration

EMPA - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, ERAM Group St. Gallen, Switzerland

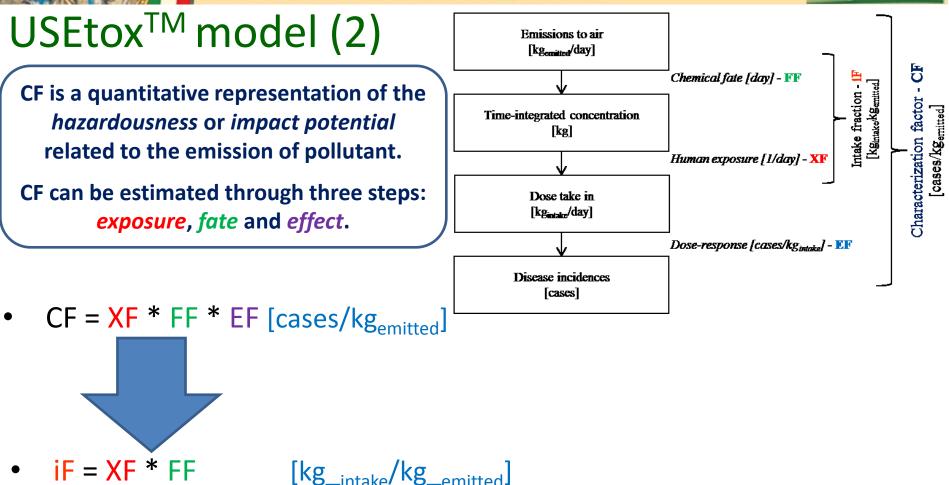
Materials Science & Technology

<u>Conference</u>


Pini M., Salieri B., Ferrari A.M., Nowack B. and Hischier R. (2014) Nanosafe 2014, November 18-20, 2014, Grenoble, France, "*Framework For Human Health Characterization Factor Calculation Of TiO*₂ *Nanoparticles*".

Pini M., Salieri B., Ferrari A.M., Nowack B. and Hischier R. (2014) XXV Congresso della Societa' Chimica Italiana, Rende (CS), September 11, 2014, *"Life Cycle Assessment of building nanomaterials: indoor and outdoor issues"*.

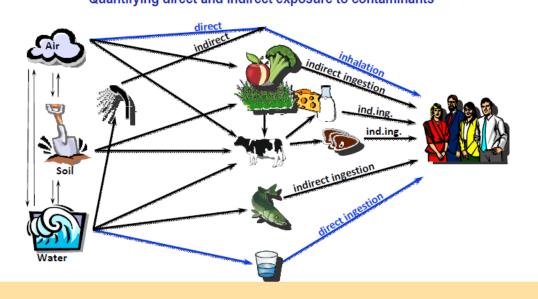
Publication


Pini M., Salieri B., Ferrari A.M., Nowack B. and Hischier R., "Human health characterization factors of TiO₂ nanoparticles in indoor and outdoor environments", International Journal of Life Cycle Assessment, Submitted.

University of Modena and Reggio Emilia

- XF (Exposure Factor) is the fraction of mass taken in by the population every day [Kg_intake*day^{-1*}Kg_in compartment⁻¹]
- FF (Fate Factor) links the pollutant mass in a given compartment to the quantity released into any considered compartment. It accounts the multimedia transport between the environmental media (air, soil, water, run-off system, etc.) [Kg_in compartment *kg_emitted -1*day]
- EF (Effect Factor) relates the quantity taken in by the population (via inhalation) to the probability of adverse effects of the pollutant in human [cases/kg_intake]

University of Modena and Reggio Emilia



The fraction of an emission <u>emitted</u> into a compartment that is taken in by the exposed population through a given <u>intake</u> pathway.

Assumptions

- One-box model
- Steady state conditions
- Direct human exposure (e.g. inhalation of air, ingestion of water)
- Compartment: air

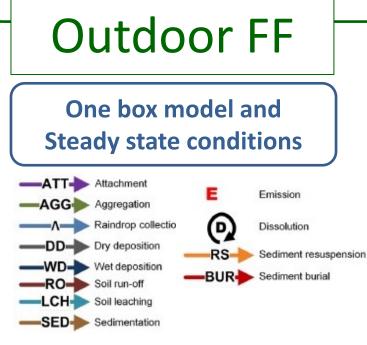
University of Modena and Reggio Emilia

Indoor intake Fraction

 $iF = \frac{INH*POP}{V*m*k_{ex}}$

Independent of the studied substance

- ➤ INH is the average human inhalation rate = 13 m³*day⁻¹ USEtoxTM
- > **POP** is the indoor exposed population (*occupational exposure*)
- V is the indoor volume
- **m** is the mixing factor (unitless) = **1** Humbert et al., 2011
- > **k**_{ex} is the air exchange rate (h⁻¹) = **3** h⁻¹ Humbert et al., 2011

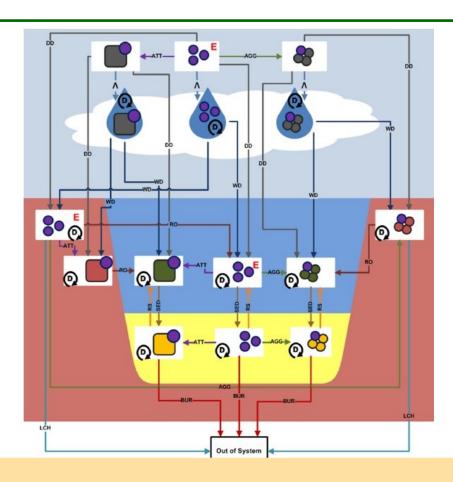

Outdoor intake Fraction

 $\mathsf{iF} = \frac{\mathsf{INH} * \mathsf{POP}}{\mathsf{V}} * \overline{FF}$

- INH is the average human inhalation rate = 13 m³*day⁻¹
- \succ **POP** is the exposed population \rightarrow Switzerland: 8112200 inhabitants
- V is the outdoor volume:
 - atmospheric height: 1 km. ECB Technical Guidance Document on Risk Assessment, 2003
 - area of Switzerland: 41285 km².
- > \overline{FF} = $-\overline{K}^{-1}$, where \overline{K} is the rate coefficient matrix, which accounts transport and removal processes between the environmental media.

SimpleBoxModel4Nano (SB4N) assesses the ENPs transport and removal rates in and across air, rain, surface waters, soil, and sediment compartments.

Free dispersive ENPs



ENPs aggregated with natural NPs (<450 nm)

Collected in raindrops

ENPs attached to natural particles (>450 nm)

Rate constant values for nano-TiO₂ calculated by SB4N

Meesters and co-author estimated the transport and removal processes for nano-TiO₂ considering the input parameters and systemic dimensions of *Mueller and Nowack, 2008* study.

Area, Height, Volume of Atmosphere, Soil and Water *TiO*₂-NPs radius, *TiO*₂-NPs mass density, Aggregation and Attachement efficiency

University of Modena and Reggio Emilia

Outdoor intake Fraction

System Matrix of the rate constants for each compartment and physical-chemical form \overline{K} [day⁻¹]

k [day⁻¹]	Free in atmosphere	Agg in atmosphere	Att in atmosphere	Free in rain	Agg in <mark>rain</mark>	Att in <mark>rain</mark>	Free in soil	Agg in soil	Att to soil	Free in water	Agg in water	Att in water	Free in sediment	Agg in sediment	Att in sediment
Free in atmosphere	-(∑krAfree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agg in atmosphere	kaggA	-(∑krAagg)	0	0	0	0	0	0	0	0	0	0	0	0	0
Att in atmosphere	kattA	0	-(∑krAatt)	0	0	0	0	0	0	0	0	0	0	0	0
Free in <mark>rain</mark>	k∧ARfree	0	0	-(Σ krRfree)	0	0	0	0	0	0	0	0	0	0	0
Agg in <mark>rain</mark>	0	kЛARagg	0	0	-(Σ krRagg)	0	0	0	0	0	0	0	0	0	0
Att in <mark>rain</mark>	0	0	k∧ARatt	0	0	-(Σ krRatt)	0	0	0	0	0	0	0	0	0
Free in soil	kdepASfree	0	0	kdepRSfree	0	0	-(Σ krSfree)	0	0	0	0	0	0	0	0
Agg in soil	0	kdepASagg	0	0	kdepRSagg	0	kaggS	-(Σ krSagg)	0	0	0	0	0	0	0
Att to soil	0	0	kdepASatt	0	0	kdepRSatt	kattS	0	-(∑krSatt)	0	0	0	0	0	0
Free in water	kdepAWfree	0	0	kdepRWfre e	0	0	krunSWfree	0	0	-(∑krWfree)	0	0	krsSEWfree	0	0
Agg in water	0	kdepAWagg	0	0	kdepRWagg	0	0	krunSWagg	0	kaggW	-(Σ krWagg)	0	0	krsSEWagg	0
Att in water	0	0	kdepAWatt	0	0	kdepRWatt	0	0	kerosionSW att	/ kattW	0	-(∑krWatt)	0	0	krsSEWatt
Free in sediment	0	0	0	0	0	0	0	0	0	kdepWSEfree	0	0	-(Σ krSEfree)	0	0
Agg in sediment	0	0	0	0	0	0	0	0	0	0	kdepWSEagg	0	kaggSE	-(Σ krSEagg)	0
Att in sediment	0	0	0	0	0	0	0	0	0	0	0	kdepWSEatt	kattSE	0	-(∑krSEatt)

Matrices: $\overline{FF} = -\overline{K}^{-1}$

 $\overline{iF} = \overline{XF} * \overline{FF}$

University of Modena and Reggio Emilia

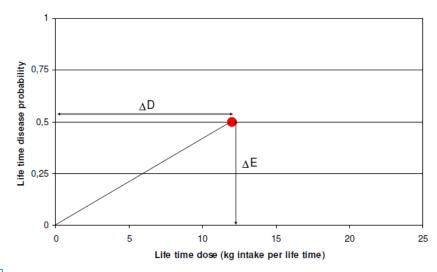
Effect Factor

 The human-toxicological EF is calculated under the assumption of linearity in concentration-response up to the point in which the life time disease probability is 0.5.

2)
$$EF = \frac{0.5}{ED_{50h}^{lifetime}} [cases/kg_{intake}]$$

3)
$$ED_{50h}^{lifetime} = \frac{ED_{50}^{a,t,j}*BW*LT*N}{AF_a*AF_t}$$

Carcinogenic effects


 $ED_{50}^{a,t,j}$ is the daily effect dose for animal a, time duration t and exposure route j that causes a disease probability of 50% [mg*kg^{-1*}day⁻¹].

 AF_a = extrapolation factor for interspecies differences AF_t = extrapolation factor for differences in time of exposure

(2 for subchronic to chronic exposure and 5 for subacute to chronic exposure)

BW = body weight of humans

LT = average lifetime of humans; N = number of days per year

Non-carcinogenic effects

 $ED_{50}^{a,t,j}$ can also be extrapolated from NOAEL (*no-observed adverse effect level*) and NOAEL from LOAEL (*low-observed adverse effect level*).

 $ED_{50}^{a,t,j} = NOAEL^{a,t,j} * AF_N$ AF_N= 9 (Huijbregts et al., 2005)

 $NOAEL^{a,t,j} = LOAEL^{a,t,j} / AF_{L}$ $AF_{L} = 4$ (Huijbregts et al., 2005)

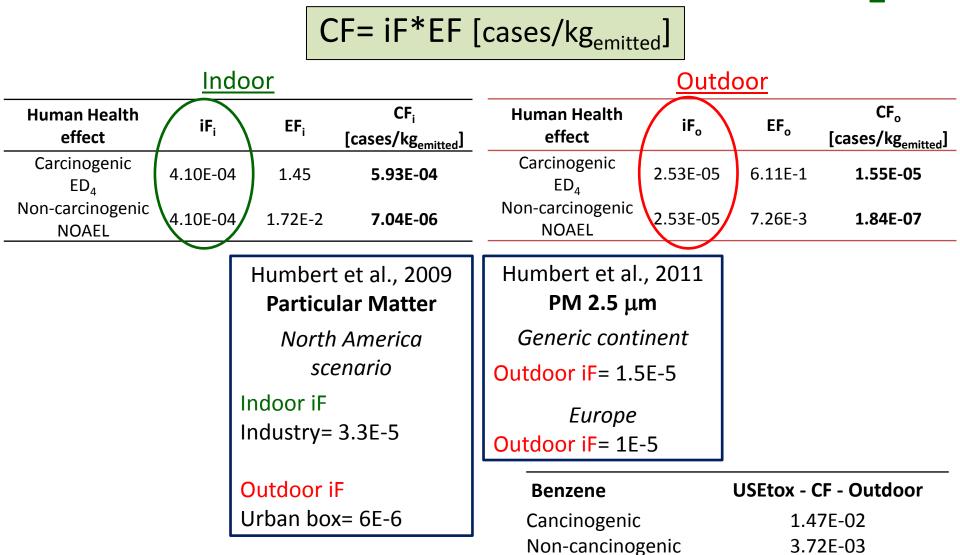
Carcinogenic and Non-carcinogens effects (1)

Human Effects	References	Type of study and toxicity indicator	Toxicity value		
Carcinogens	NIOSH National Institute for Occupational Safety and Health, 2011	 Sub-chronic oral study on rat. Benchmark dose associated with a 4% inflammatory response= 0.0144 m²_{TiO2}/g rat-lung. 	ED4 ^{rat,s-c,inh} 0.3 mg/kg-bw/day		
Non-carcinogens	SCCS Scientific Committee on Consumer Safety, 2013	Sub-chronic oral study on mice.NOAEL.	ED ₅₀ ^{mice,s-c,inh} 62.5 mg/kg-bw/day		

Carcinogenic and Non-carcinogens effects (2)

<u>Indoor</u>

- N = number of working days per year = 240 days/year (European labour law, 99/70/EC)
- LT = 45-years working lifetime (*NIOSH, 2011*)


<u>Outdoor</u>

- N = number of day per year = 365 days/year
- LT = average lifetime of humans = 70 years

Human health effect	INDOOR EF _i	OUTDOOR EF _o		
Carcinogenic	1.45	6.11E-1		
Non-carcinogenic	1.72E-2	7.26E-3		

University of Modena and Reggio Emilia

Characterization Factors nano-TiO₂

University of Modena and Reggio Emilia

Characterization Factors nano-TiO₂

CF= iF*EF [DALY/kg_{emitted}]

Severity assessment \rightarrow Endpoint Characterization Factors

Default damage severity factors of *11.5 DALY/cases(cancer)* and of *2.7 DALY/cases(non-cancer)* have been adopted (Huijbregts et al., 2005).

DALY = Disability-adjusted life year is a measure of overall disease burden, expressed as the number of years lost due to ill-health, disability or early death.

<u>Indo</u>	or	<u>Out</u>	<u>door</u>	
Human Health effect	CF _{s,i} [DALY/kg _{emitted}]	Human Health effect	CF _{s,o} [DALY/kg _{emitted}]	
Carcinogenic ED ₄	6.82E-03	Carcinogenic ED ₄	1.78E-04	
Non-carcinogenic NOAEL	1.90E-05	Non-carcinogenic NOAEL	4.96E-07	
Non-carcinogenic LOAEL	9.51E-04	Non-carcinogenic LOAEL	2.48E-05	

Conclusions

 Human Health CFs of TiO₂ nanoparticles have been performed for both *indoor* and *outdoor* enviroments and *carcinogens* and *noncarcinogens* effects following USEtox[™] model.

• Challenge:
$$F04 \rightarrow ED50$$
 $ED4 \leftarrow \rightarrow ED50$

- Indoor iF_i the FF_i could be improved including aggregation, attachment rates in indoor environment.
- Outdoor FF_o could be re-modeling for a wide geographic area using SB4N model.

University of Modena and Reggio Emilia

Materials Science & Technology

Thank for your attention! Martina Pini

martina.pini@unimore.it

