

LCA of microwave absorbers obtained from copper slags

Elisabetta Zerazion

DISMI Università di Modena e Reggio Emilia

PROJECT LIFE10 ENV/IT/419

Partners involved:

- Industries: Ceramica Fondovalle S.p.A. and Micro Energy S.r.l.
- University of Trento
- University of Modena and Reggio Emilia

General goal: Energy free valorisation of copper metallurgical waste

Objectives

- $\checkmark\,$ Diminution of the environmental load
- \checkmark Strengthen the slags market through its valorisation

Producing new materials as:

- heating elements
- semiconducting glazes (residential applications)

- MW absorbers

Vs traditional materials: less energy less raw materials

1ton Cu \rightarrow ton Cu slags

concrete additive, anti-freeze layer in road construction, mineral abrasive...

MW ABSORBERS

Bulk with copper slags (CS)

Tile with *copper slags (CS)*

Silicone carbide (SiC) tile

Powder (65-70wt%)

Waste glass (15-20wt%) Other oxides (10wt%)

Powder (60wt%) Clays (40wt%)

SiC: 78% Bond: 20% Iron oxide: 0,9% Other oxides: 1,1%

Flow Chart Primary Production of copper (IPCC-BREF)

POTENTIAL OUTPUT

REGGIOEMILIA

Flow Chart Bulk with <u>CS</u>

Flow Chart of tile with <u>CS</u>

7

Flow Chart of SiC tile

8

Microwave absorbers

Bulk with CS

325x325x10mm 2,28kg

Tile with CS

325x325x10mm 3kg Microenergy Srl

SiC tile

325x325x10mm 2,01kg Saint-Gobain Ceramics

Microwave absorbers

Bulk with CS

Absorbers

- \rightarrow release the absorbed heat, speeding up heating
- \rightarrow contribute to the capture of microwave emissions

Tile with CS

$\hat{\mathbf{U}}$

SiC tile

Dir. 2013/35/UE Exposure Limit Value, ELV: 50 Wm⁻² 6 GHz \leq f \leq 300 GHz

- 1. LCA of the bulk with <u>CS</u>
- 2. LCA of the tile with <u>CS</u>
- 3. LCA of the SiC tile
- 4. LCA comparative analysis of all 3 materials

Goal and scope 1) Assessment of the environmental impacts caused by the production

- of the bulk and the ceramic tile containing copper slags applied on industrial
- microwave. 2)Comparative analysis carried out between the innovative products and one commonly used in the target market (SiC tile).
- <u>Studied system</u> a bulk and a ceramic tile both obtained using copper slags, compared to the traditional tile contained SiC.
- <u>Function of the system</u> to attenuate microwave emissions in accordance with the provisions of the legislation (Dir. 2013/35/UE).
- <u>Functional unit</u> mass of material produced, which represents one tile (325x325mm) required for the lifespan of one industrial microwave oven.
- <u>System boundaries</u> all the stages of the product's life from-cradle-to-grave.
- <u>Data quality</u> Primary data, literature data, database (Ecoinvent, Unimore-LWG) <u>Software</u> SimaPro 8.0.2
- Valution method Impact 2002+

Assumptions

Economic allocation

Copper slags are not considered as waste (K. Harn Wei 2013)

	Mass production	Price	Allocation
Copper	1 ton	5305	99,147%
		€/ton*	
Slags	1,63 ton	28 €/ton**	0,853%

Efficacy and duration

Same performance for the three materials examined

Analysis of Bulk with <u>CS</u>

Analysis of Bulk with <u>CS</u>

- Functional Unit: 2,28kg
- Total Damage: 1,38E-3Pt
- Major process contribution:
 50% Melting

42% Preparation raw materials

36% Respiratory inorganics *PM* 2,5

19% Non renewable energy Oil

17% Global Warming CO₂

15% Terrestrial ecotoxicity Zinc

Major impacts on:
 32% Non renewable energy
 29% Respiratory inorganics
 26% Global Warming

Analysis of Tile with <u>CS</u>

Analysis of Tile with <u>CS</u>

- Functional Unit: 3kg
- Total Damage: 8,53E-4Pt
- Major process contribution:
 40% Slip production
- 28% Pressing-Drying-Firing
- Major impacts on:
 31% Respiratory inorganics → PM 2,5 → Slip production
 27% Non renewable energy → Natural gas
 24% Global Warming → CO₂ Firing

Comparison between Bulk with <u>CS</u>, Tile with <u>CS</u> and SiC tile

3			
	vith CS	Tile with CS	
	/		
	/		
	la construir a second	en e	
	<u>/</u>		
Carcinogens	Ozone layer depletion	Aquatic ecotoxicity	Land occupation
Non-carcinogens	Ionizing radiation	Terrestrial ecotoxicity	Mineral extraction
Respiratory organic	📃 Global warming	Terrestrial acid/nutri	Non renewable energy
Respiratory inorganics			

Comparison between Bulk with <u>CS</u>, Tile with <u>CS</u> and SiC tile

- Functional Unit: the necessary mass for one MW oven
- Total Damage Bulk with CS: 1,38E-3 Pt
- Total Damage Tile with CS : 8,53E-4 Pt
- Total Damage SiC Tile: 3,01E-3 Pt
- Major process contribution:
 83% Slip production

- → 54% lower than SiC tile

→ 94% SiC production

SiC production

Composition of 1kg of SiC (Ecoinvent database)

RoW, Rest of the World RER, European production Recycled RoW and RER

Sensitivity analysis: Tile with <u>CS</u> and tile with <u>only</u> recycled SiC

Sensitivity analysis: Tile with <u>CS</u> and tile with <u>only</u> recycled SiC

- Functional Unit: the necessary mass for one MW oven
- Total Damage Bulk with CS: 1,38E-3 Pt

→ 28% higher than recycled SiC tile

 Total Damage recycled SiC Tile: 9,17E-4 Pt

CONCLUSIONS

Among the all MW absorbers analysed, the innovative material produced by Microenergy S.r.l shows the best environmental performance.

Valorisation of waste material

- 90% of waste raw materials have been used to produce the final bulk samples
- 60% of waste material have been used in the production of copper slags tile

Possible improvements

Thank you for your attention