

Life Cycle Assessment of a nanoTiO₂ glazed steel panel

Simona Marinelli

in collaboration with

Prof. ssa B. Rimini, Ing. R. Gamberini

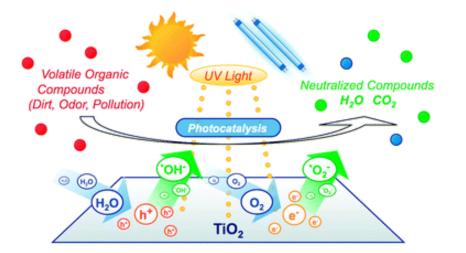
(DISMI - Department of Sciences and Methods for Engineering,

University of Modena and Reggio Emilia)

Overview

XARACNE www.aracne.emr.it

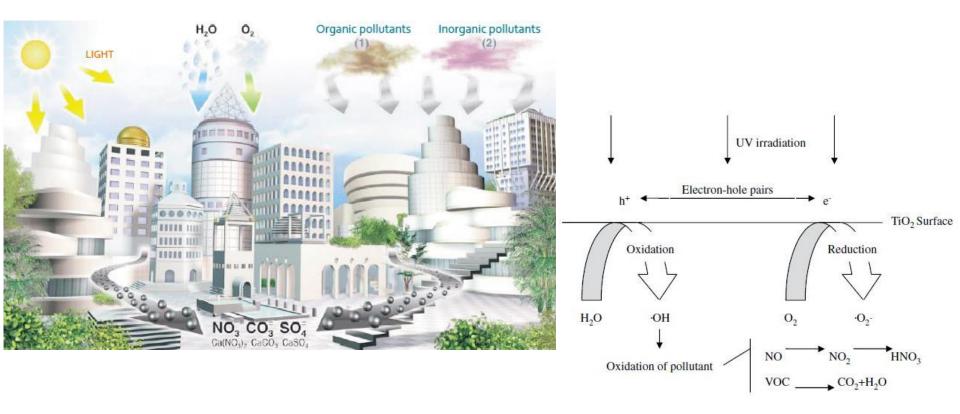
• Italian project


- ✓ 3 companies of Emilia-Romagna (suppliers of building industries)
- ✓ University of Modena and Reggio Emilia
- ✓ University of Bologna
- study new building materials with higher technological properties obtained by the addition of TiO₂nanomaterials

The most important properties about TiO₂

photo – induced redox reaction of adsorbed substances

photo – induced super hydrophilicity



- ✓ Air depollution
- ✓ Self-cleaning
- ✓ Self-disinfecting
- ✓ Self-sterilizing
- ✓ Anti-fogging

Air depollution (outdoor and indoor)

Pollution removal mechanism of TiO₂ photocatalysis

Source: J. Chen, C.-sun Poon / Building and Environment 44 (2009) 1899–1906

Self-cleaning nanoTiO₂ coatings

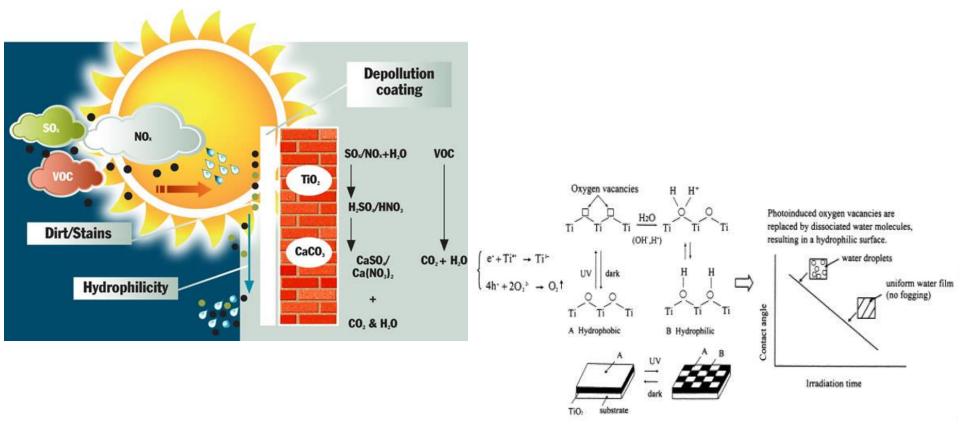


Photo-induced hydrophylic TiO₂ surface

Source: J. Chen, C.-sun Poon / Building and Environment 44 (2009) 1899–1906

NanoTiO₂: toxic or harmless?

Uncertainties and knowledge gaps

on behavior and toxicity of nanoparticles :

preliminary <u>attempt</u> to introduce in LCIA the damage on human health

generated by titania nanoparticles emissions to air

References				
NIOSH	0.3 mg/m ³ = occupational exposure limits for ultrafine TiO ₂			
National Institute for Occupational Safety and Health	(concentration that would be sufficient to reducing the risk of lung tumors to a 1/1000 lifetime excess risk level)			
IARC	TiO ₂ in Group 2B = "possibly carcinogenic to humans"			
International Agency for Research on Cancer	(sufficient evidence of carcinogenicity in experimental animals and inadequate evidence of carcinogenicity in humans)			

Source: 1° SEMINARIO TECNICO - Il contributo del dipartimento di scienze e metodi dell'ingegneria nello sviluppo del Life Cycle Assessment (LCA) per la gestione della sostenibilità ambientale – 18-09-2013

Pini M., Neri P., Montecchi R., Ferrari A.M., 247th ACS National Meeting & Exposition, Dallas, Texas, March 16-20, 2014, "Life Cycle Assessment of nanoTiO2 functionalized porcelainized stoneware tiles".

LCA study

of an industrial scale up for the production of **self-cleaning steel panel** glazed with TiO₂ nanoparticles

Goal and scope definition

- **Studied system:** nanoTiO₂ glazed steel surface
- System function: self-cleaning and anti-smog external coating
- Functional unit: 1m² of glazed steel panel
- Life span: 20 years

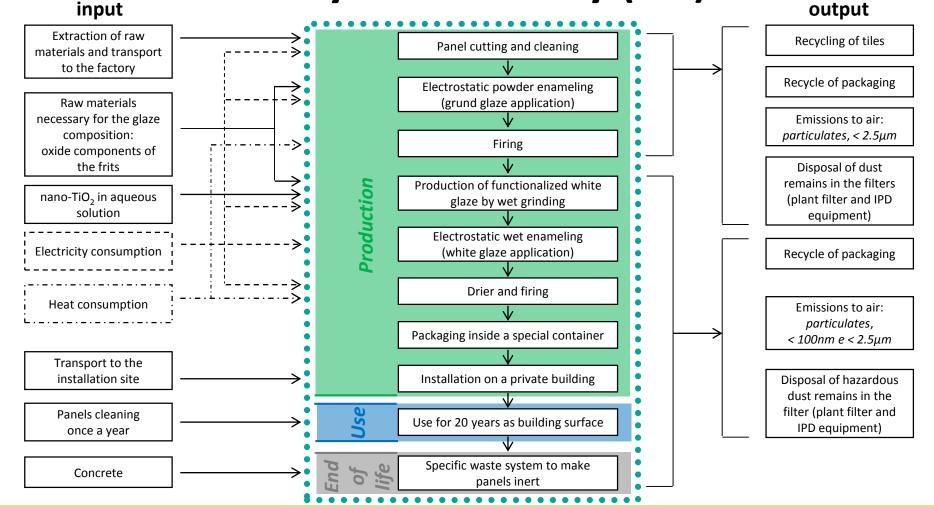
Source: Superfici in smalto porcellanato nano-strutturate mediante applicazione di nanotitania, C.I.S.P. Centro Italiano Smalti Porcellanati, Smalto porcellanato-Tecnologia & Mercati'' n.3, 2009.

- System boundaries: 'from cradle to grave'
- Data quality: primary data and literature sources
- Calculation software: SimaPro 7.3.3
- Impact assessment method: modified IMPACT 2002+

Modified IMPACT 2002+

Determination of damage to human health caused by outdoor and indoor/inhaled nanoTiO₂ emissions

	Outdoor emissions	Indoor/Inhaled emissions	
Characterization factor	0.109 kg _{C2H3Cl} /kg _{nanoTiO2}	1kg _{C2H3Cl} /kg _{nanoTiO2}	
Damage assessment factor	2.8 E-6 DALY/kg*	5.5 DALY/kg	
New substance	Particulates, <100 nm	Particulates, <100 nm indoor/inhaled	
Impact category	Carcinogens*	Carcinogens inhaled	
Damage category	Human Health*	Carcinogens inhaled	
Data input	emissions not captured by air filter and emissions not inhaled by workers	emissions not captured by face mask and so inhaled by workers	


* Unchanged with respect to IMPACT 2002+

Source: Life cycle assessment of nanoTiO₂ coated self-cleaning float glass, M.Pini, A.M.Ferrari, E.I.C.Gonzales, P.Neri, C.Siligardi / Proceeding of Nanotech 2013

DiSMI Dipartimento di Scienze e Metodi dell'Ingegneria

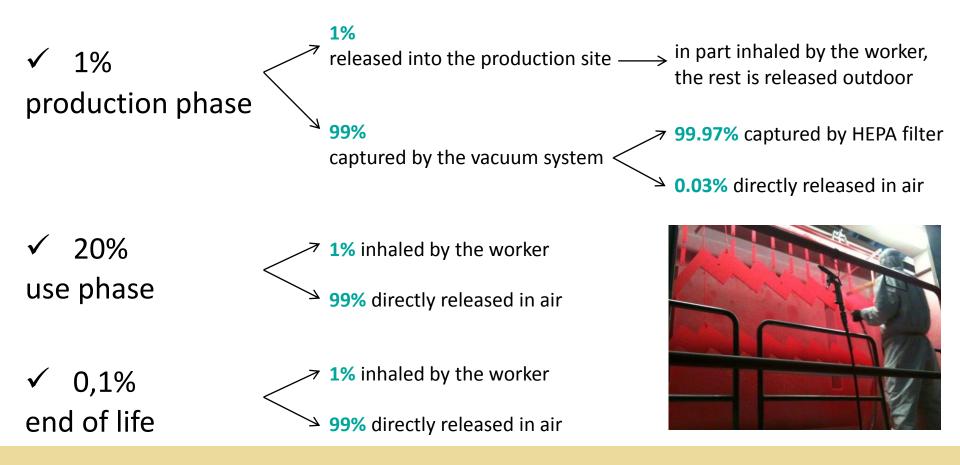
Life Cycle Inventory (LCI)

Università degli Studi di Modena e Reggio Emilia

Ecodesign approach

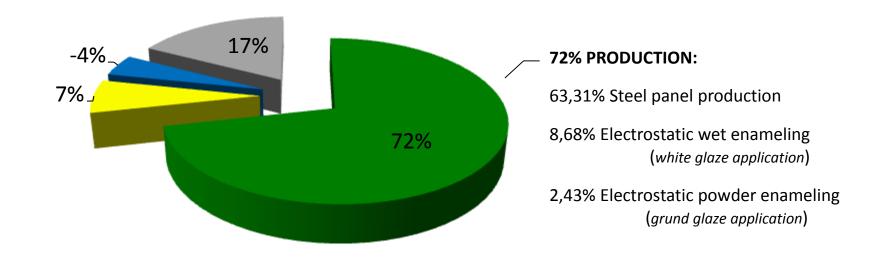
✓ to define the potential damage of TiO₂ nanoparticles
✓ to minimize the environmental burdens

Assumptions:


- HEPA (*High Efficiency Particulate Air filter*): 99,97% of efficiency
- PPE (*Personal Protective Equipment*): face mask with 95% of efficiency
- Closed manufacturing system
- Attention to final waste treatments

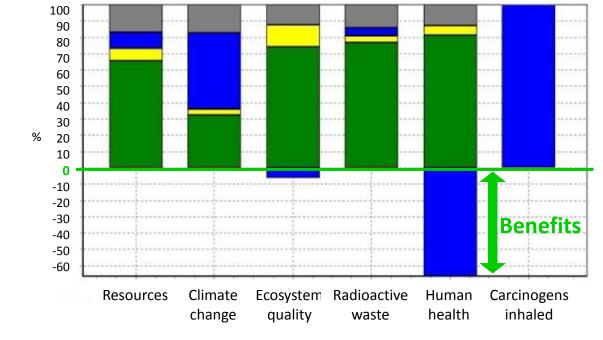
Assumptions on emissions

Estimation of nanoparticles emissions in all life cycle stage:



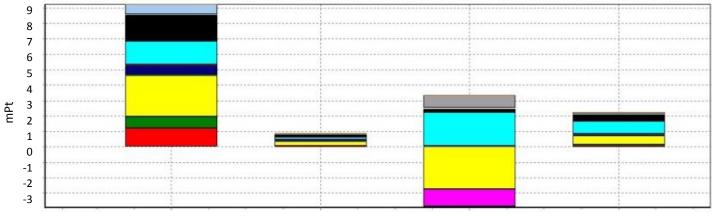
LCIA – Single score 1m² of a nano TiO₂ glazed steel panel

Total damage: 11,78 mPt


■ PRODUCTION (9,243 mPt) INSTALLATION (0,871 mPt) USE (-0,57 mPt) END OF LIFE (2,235 mPt)

LCIA – Single score 1m² of a nano TiO₂ glazed steel panel

Total damage: 11,78 mPt


PRODUCTION (9,243 mPt) INSTALLATION (0,871 mPt) USE (-0,57 mPt) END OF LIFE (2,235 mPt)

DiSMI Dipartimento di Scienze e Metodi dell'Ingegneria

Università degli Studi di Modena e Reggio Emilia

PRODUCTION INSTALLATION

N

USE

END OF LIFE

REGGIOEMILIA

Most affected Impact categories	Amount (mPt)	Substance that produces the higher damage	Life cycle phase that produces the higher damage
Radioactive waste	0,87	Volume occupied	Production
Non-renewable energy	2,64	Oil crude in ground	Production
Global warming	4,65	Carbon dioxide fossil	Production
Respiratory inorganics	2,67	Particulates, <2,5 um	Production
Non carcinogens	0,65	Arsenic ion in water	Production
Carcinogens	1,28	Hydrocarbons, aromatic	Production
Carcinogens inhaled	0,829	Particulates, <100 nm	Use
Respiratory organics	-1,12	-Toluene in air	Use

Conclusions and reccomendations

- The most impactful stages of the life cycle of nanoTiO₂ glazed steel panel are: production of the steel panel and application of white functionalized glaze.
- This study is based on assumptions regarding the possible release of nanoparticles during the production stage but also during the use and end of life phases.
- All manufacturing processes are summarized conceiving the idea to minimize all environmental loads: the presence of suction systems and personal protective equipment to protect workers from dust and nanoparticles emissions were considered at all stages of the life cycle.
- The possible industrial scale-up has to **take into account all these precautionary systems** in order to manage the environmental burdens.
- It is still open the question of the **possible toxicity of nanoparticles**.

info-lca@unimore.it